Click here to sign in with or
by Chinese Academy of Sciences
High-accuracy spatially and temporally resolved temperature sensing is critical and has broad applications in diverse fields, such as industrial manufacturing, environmental protection, and healthcare monitoring. Optical-based sensors offer attractive solutions for temperature monitoring in biomedical diagnostics, owing to their advantages of remote detection, minimal intrusion, immunity to electromagnetic interference, and high resolution. These optical sensing modalities can be based on luminous intensity, wavelength, peak width, and/or decay lifetime. The upconversion mechanism mitigates the biological autofluorescence, facilitates tissue penetration, and yields conveniently-visualized and easily-captured visible light signals, presenting a more suitable method for sensing in biological systems
In a new paper published in Light Science & Application, a team of scientists, led by Dr. He Ding from School of Optics and Photonics, Beijing Institute of Technology, Prof. Xing Sheng from Department of Electronic Engineering, Tsinghua University, and co-workers have developed an optoelectronic NIR-to-visible upconversion device based on designed semiconductor heterostructures, exhibiting a linear response, fast dynamics, and low excitation power. The temperature-dependent photoluminescence characteristics of the optoelectronic upconversion device are systematically investigated and its capability for thermal sensing is demonstrated.
The proposed temperature sensing strategy is based on a fully integrated optoelectronic upconversion device consisting of a low-bandgap, gallium arsenide (GaAs) based double junction photodiode and a large-bandgap, indium gallium phosphide (InGaP) based light-emitting diode (LED) connected in series. As demonstrated previously, the lithographically defined and epitaxially released microscale devices (size ~300×300 μm2) realize efficient NIR-to-visible upconversion with a linear response and ultrafast dynamics.
Under near-infrared light excitation in the wavelength range of 770–830 nm, the red emission of the optoelectronic upconversion device is accompanied by a decreased intensity and a redshift of the emission peak from 625 nm to 637 nm with increasing temperature. Based on synergic factors ascribed to the materials characteristics and structure design, an intensity-temperature sensitivity of ~1.5% °C-1 and a spectrum-temperature sensitivity of ~0.18 nm °C-1 are attained.
With such a robust optoelectronic upconversion optical thermometer, the scientists propose several applications:
"Through a large-area device array of the optoelectronic upconversion devices, we can perform spatially resolved thermal sensing. For example, we use air guns to generate hot airflow that blows on the sample, disturbs, and eventually extinguishes the upconversion emission. According to the relationship between emission intensity and temperature, we can obtain the spatial distribution and real-time changes of temperature," said He Ding at Beijing Insitute of Technology.
"The upconversion device can be released from the grown substrate and further integrated with fiber optics to form light-guided thermal sensors. Complementary with tethered electrical sensors, such an optical-based technique is more suitable for use in environments with strong electromagnetic interferences, and in particular, capable of obtaining signals during magnetic resonance imaging (MRI). Such a fiber-coupled, portable system can be conveniently applied for biomedical applications, for example, monitoring the exhalation behavior closed to the mouth of human and deep tissue with the implantation in the mouse brain, as a proof-of-concept demonstration," said Xing Sheng at Tsinghua University.
"The MRI-compatible, implantable sensors combined with fiber optics offer both research and clinical significance, with a potential for localized temperature monitoring in the deep body. These materials and device concepts establish a power tool set with vast applications in the environment and healthcare," Xing Sheng concluded. Explore further Precise antitumor strategy achieved via photo-switchable lanthanide-doped nanoparticles More information: He Ding et al, An Optoelectronic thermometer based on microscale infrared-to-visible conversion devices, Light: Science & Applications (2022). DOI: 10.1038/s41377-022-00825-5 Journal information: Light: Science & Applications
Provided by Chinese Academy of Sciences Citation: An optoelectronic thermometer based on microscale infrared-to-visible conversion devices (2022, May 13) retrieved 14 May 2022 from https://phys.org/news/2022-05-optoelectronic-thermometer-based-microscale-infrared-to-visible.html This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.More from Physics Forums | Science Articles, Homework Help, Discussion
Use this form if you have come across a typo, inaccuracy or would like to send an edit request for the content on this page. For general inquiries, please use our contact form. For general feedback, use the public comments section below (please adhere to guidelines).
Please select the most appropriate category to facilitate processing of your request
Thank you for taking time to provide your feedback to the editors.
Your feedback is important to us. However, we do not guarantee individual replies due to the high volume of messages.
Your email address is used only to let the recipient know who sent the email. Neither your address nor the recipient's address will be used for any other purpose. The information you enter will appear in your e-mail message and is not retained by Phys.org in any form.
Get weekly and/or daily updates delivered to your inbox. You can unsubscribe at any time and we'll never share your details to third parties.
Medical research advances and health news
The latest engineering, electronics and technology advances
The most comprehensive sci-tech news coverage on the web
This site uses cookies to assist with navigation, analyse your use of our services, collect data for ads personalisation and provide content from third parties. By using our site, you acknowledge that you have read and understand our Privacy Policy and Terms of Use.